
Logic and Lattices for Distributed Programming

Neil Conway
William Marczak
Peter Alvaro
Joseph M. Hellerstein
David Maier

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2012-167

http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-167.html

June 22, 2012

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
22 JUN 2012 2. REPORT TYPE

3. DATES COVERED
 00-00-2012 to 00-00-2012

4. TITLE AND SUBTITLE
Logic and Lattices for Distributed Programming

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Electrical Engineering and
Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
In recent years there has been interest in achieving applicationlevel consistency criteria without the latency
and availability costs of strongly consistent storage infrastructure. A standard technique is to adopt a
vocabulary of commutative operations this avoids the risk of inconsistency due to message reordering. A
more powerful approach was recently captured by the CALM theorem, which proves that logically
monotonic programs are guaranteed to be eventually consistent. In logic languages such as Bloom, CALM
analysis can automatically verify that program modules achieve consistency without coordination. In this
paper we present BloomL, an extension to Bloom that takes inspiration from both these traditions. BloomL
generalizes Bloom to support lattices and extends the power of CALM analysis to whole programs
containing arbitrary lattices. We show how the Bloom interpreter can be generalized to support efficient
evaluation of lattice-based code using well-known strategies from logic programming. Finally we use
BloomL to develop several practical distributed programs including a key-value store similar to Amazon
Dynamo and show how BloomL encourages the safe composition of small, easy-to-analyze lattices into
larger programs.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

17

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Copyright © 2012, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

We would like to thank Emily Andrews, Peter Bailis, Tyson Condie, Ali
Ghodsi, and Matei Zaharia for their helpful feedback on this paper. This
work was supported by the Air Force Office of Scientific Research (grant
FA95500810352), the Natural Sciences and Engineering Research Council
of Canada, the National Science Foundation (grants CNS-0722077, IIS-
0713661, IIS-0803690, and IIS-0917349), and gifts from NTT Multimedia
Communications Laboratories and Microsoft Research.

Logic and Lattices for Distributed Programming

Neil Conway
UC Berkeley

nrc@cs.berkeley.edu

William R. Marczak
UC Berkeley

wrm@cs.berkeley.edu

Peter Alvaro
UC Berkeley

palvaro@cs.berkeley.edu
Joseph M. Hellerstein

UC Berkeley
hellerstein@cs.berkeley.edu

David Maier
Portland State University
maier@cs.pdx.edu

ABSTRACT
In recent years there has been interest in achieving application-
level consistency criteria without the latency and availability
costs of strongly consistent storage infrastructure. A stan-
dard technique is to adopt a vocabulary of commutative op-
erations; this avoids the risk of inconsistency due to message
reordering. A more powerful approach was recently captured
by the CALM theorem, which proves that logically mono-
tonic programs are guaranteed to be eventually consistent.
In logic languages such as Bloom, CALM analysis can au-
tomatically verify that program modules achieve consistency
without coordination.

In this paper we present BloomL, an extension to Bloom
that takes inspiration from both these traditions. BloomL gen-
eralizes Bloom to support lattices and extends the power of
CALM analysis to whole programs containing arbitrary lat-
tices. We show how the Bloom interpreter can be general-
ized to support efficient evaluation of lattice-based code us-
ing well-known strategies from logic programming. Finally,
we use BloomL to develop several practical distributed pro-
grams, including a key-value store similar to Amazon Dy-
namo, and show how BloomL encourages the safe composi-
tion of small, easy-to-analyze lattices into larger programs.

1. INTRODUCTION
As cloud computing becomes increasingly common, the

inherent difficulties of distributed systems—asynchrony, con-
currency, and partial failure—affect a growing segment of the
developer community. Traditionally, transactions and other
forms of strong consistency encapsulated these problems at
the data management layer. But in recent years there has
been interest in achieving application-level consistency cri-
teria without incurring the latency and availability costs of
strongly consistent storage [8, 17]. Two different frameworks
for these techniques have received significant attention in
recent research: Convergent Modules and Monotonic Logic.

Convergent Modules: In this approach, a programmer writes
encapsulated modules whose public methods provide certain
guarantees regarding message reordering and retry. For exam-
ple, Statebox is an open-source library that merges conflicting
updates to data items in a key-value store; the user of the li-

brary need only register commutative, associative, idempotent
merge functions [19]. This approach has roots in research in
databases and systems [12, 14, 17, 27, 39] as well as group-
ware [11, 37]. Shapiro, et al. recently proposed a formalism
for these approaches called Conflict-Free Replicated Data
Types (CRDTs), which casts these ideas into the algebraic
framework of semilattices [34, 35].

CRDTs present two main problems: (a) the programmer
bears responsibility for ensuring lattice properties for their
methods (commutativity, associativity, idempotence), and (b)
CRDTs only provide guarantees for individual data objects,
not for application logic in general. As an example of this
second point, consider the following:

Example 1. A replicated, fault-tolerant courseware ap-
plication assigns students into study teams. It uses two set
CRDTs: one for Students and another for Teams. The appli-
cation reads a version of Students and inserts the derived
element <Alice,Bob> into Teams. Concurrently, Bob is re-
moved from Students by another application replica. The
use of CRDTs ensures that all replicas will eventually agree
that Bob is absent from Students, but this is not enough:
application-level state is inconsistent unless the derived val-
ues in Teams are updated consistently to reflect Bob’s re-
moval. This is outside the scope of CRDT guarantees.

Taken together, the problems with Convergent Modules
present a scope dilemma: a small module (e.g., a set) makes
lattice properties easy to inspect and test, but provides only
simple semantic guarantees. Large CRDTs (e.g., an eventu-
ally consistent shopping cart) provide higher-level application
guarantees but require the programmer to ensure lattice prop-
erties hold for a large module, resulting in software that is
difficult to test, maintain, and trust.

Monotonic Logic: In recent work, we observed that the
database theory literature on monotonic logic provides a
powerful lens for reasoning about distributed consistency.
Intuitively, a monotonic program makes forward progress
over time: it never “retracts” an earlier conclusion in the face
of new information. We proposed the CALM theorem, which
established that all monotonic programs are confluent (invari-
ant to message reordering and retry) and hence eventually
consistent [5, 18, 25]. Monotonicity of a Datalog program is

1

straightforward to determine conservatively from syntax, so
the CALM theorem provides the basis for a simple analysis
of the consistency of distributed programs. We concretized
CALM into an analysis procedure for Bloom, a Datalog-based
language for distributed programming [2, 9].

The original formulation of CALM and Bloom only veri-
fied the consistency of programs that compute sets of facts
that grow over time (“set monotonicity”); that is, “forward
progress” was defined according to set containment. As a
practical matter, this is overly conservative: it precludes the
use of common monotonically increasing constructs such as
timestamps and sequence numbers.

Example 2. In a quorum voting service, a coordinator
counts the number of votes received from participant nodes;
quorum is reached once the number of votes exceeds a thresh-
old. This is clearly monotonic: the vote counter increases
monotonically, as does the threshold test (count(votes) > k)
which “grows” from False to True. But both of these con-
structs (upward-moving mutable variables and aggregates)
are labeled non-monotonic by the original CALM analysis.

The CALM theorem obviates any scoping concerns for
convergent monotonic logic, but it presents a type dilemma.
Sets are the only data type amenable to CALM analysis,
but the programmer may have a more natural representation
of a monotonically growing phenomenon. For example, a
monotonic counter is more naturally represented as a growing
integer than a growing set. This dilemma leads either to false
negatives in CALM analysis and over-use of coordination, or
to idiosyncratic set-based implementations that can be hard
to read and maintain.

1.1 BloomL: Logic and Lattices
We address the two dilemmas above with BloomL, an ex-

tension to Bloom that incorporates a semilattice construct
similar to CRDTs. We present this construct in detail below,
but the intuition is that BloomL programs can be defined over
arbitrary types—not just sets—as long as they have commu-
tative, associative, idempotent merge functions (“least upper
bound”) for pairs of items. Such a merge function defines a
partial order for its type. This generalizes Bloom (and tradi-
tional Datalog), which assumes a fixed merge function (set
union) and partial order (set containment).

BloomL provides three main improvements in the state of
the art of both Bloom and CRDTs:

1. BloomL solves the type dilemma of logic programming:
CALM analysis in BloomL is able to assess monotonic-
ity for arbitrary lattices, making it significantly more
liberal in its ability to test for confluence. BloomL can
validate the coordination-free use of common constructs
like timestamps and sequence numbers.

2. BloomL solves the scope dilemma of CRDTs by provid-
ing monotonicity-preserving mappings between lattices
via morphisms and monotone functions, as described

1 class ShortestPaths
2 include Bud

4 state do
5 table :link, [:from, :to] => [:cost]
6 scratch :path, [:from, :to, :next_hop, :cost]
7 scratch :min_cost, [:from, :to] => [:cost]
8 end

10 bloom do
11 path <= link {|l| [l.from, l.to, l.to, l.cost]}
12 path <= (link*path).pairs(:to => :from) do |l,p|
13 [l.from, p.to, l.to, l.cost + p.cost]
14 end

16 min_cost <= path.group([:from, :to], min(:cost))
17 end
18 end

Figure 1: All-pairs shortest paths in Bloom.

below. By using such mappings, the per-component
monotonicity guarantees offered by CRDTs can be ex-
tended across multiple items of lattice type. This capa-
bility is key to the CALM analysis described above. It
is also useful for establishing the monotonicity of sub-
programs even when the whole program is not designed
to be monotonic.

3. For efficient incremental execution, we extend the stan-
dard Datalog semi-naive evaluation scheme [7] to sup-
port arbitrary lattices. We also describe how an existing
Datalog-style engine can be extended to support lattices
with relatively minor changes.

1.2 Outline
The remainder of the paper proceeds as follows. Section 2

provides background on Bloom and CALM. In Section 3
we introduce BloomL, including cross-lattice morphisms and
monotone functions. We detail BloomL’s built-in lattice types
and show how developers can define new lattices. We also
describe how the CALM analysis extends to BloomL. In
Section 4, we describe how we modified the Bloom runtime
to support BloomL, including our extension to semi-naive
evaluation that supports both lattices and relations.

In Sections 5 and 6, we present two case studies. First, we
use BloomL to implement a distributed key-value store that
supports eventual consistency, object versioning using vector
clocks, and quorum replication. Second, we revisit the simple
e-commerce scenario presented in Alvaro et al. in which
clients interact with a replicated shopping cart service [2].
We show how BloomL can be used to make the “checkout”
operation monotonic and confluent, despite the fact that it
requires aggregating over a distributed data set.

2. BACKGROUND
In this section, we review the Bloom programming lan-

guage and the CALM program analysis. We highlight a sim-
ple distributed program for which the CALM analysis over
sets yields unsatisfactory results.

2

Name Behavior
table Persistent storage.
scratch Transient storage.
channel Asynchronous communication. A fact de-

rived into a channel appears in the
database of a remote Bloom instance at
a non-deterministic future time.

periodic Interface to the system clock.
interface Interface point between software modules.

Table 1: Bloom collection types.

2.1 Bloom
Bloom programs are bundles of declarative statements

about collections of facts (tuples). An instance of a Bloom
program performs computation by evaluating its statements
over the contents of its local database. Instances communicate
via asynchronous messaging, as described below.

An instance of a Bloom program proceeds through a se-
ries of timesteps, each containing three phases.1 In the first
phase, inbound events (e.g., network messages) are received
and represented as facts in collections. In the second phase,
the program’s statements are evaluated over local state to
compute all the additional facts that can be derived from the
current collection contents. In some cases (described below),
a derived fact is intended to achieve a “side effect,” such as
modifying local state or sending a network message. These
effects are deferred during the second phase of the timestep;
the third phase is devoted to carrying them out.

The initial implementation of Bloom, called Bud, allows
Bloom logic to be embedded inside a Ruby program. Figure 1
shows a Bloom program represented as an annotated Ruby
class. A small amount of imperative Ruby code is needed to
instantiate the Bloom program and begin executing it; more
details are available on the Bloom language website [9].

2.1.1 Data model
The Bloom data model is based on collections. A collection

is an unordered set of facts, akin to a relation in Datalog.
The Bud prototype adopts the Ruby type system rather than
inventing its own; hence, a fact in Bud is just an array of
immutable Ruby objects. Each collection has a schema, which
declares the structure (column names) of the facts in the
collection. A subset of the columns in a collection form its
key: as in the relational model, the key columns functionally
determine the remaining columns. The collections used by a
Bloom program are declared in a state block. For example,
line 5 of Figure 1 declares a collection named link with
three columns, two of which form the collection’s key. Ruby
is a dynamically typed language, so keys and values in Bud
can hold arbitrary Ruby objects.

Bloom provides five collection types to represent differ-

1There is a precise declarative semantics for Bloom [1, 3], but we
describe the language operationally for the sake of exposition.

Op Name Meaning
<= merge lhs includes the content of rhs in

the current timestep.
<+ deferred merge lhs will include the content of rhs

in the next timestep.
<- deferred delete lhs will not include the content of

rhs in the next timestep.
<~ async merge (Remote) lhs will include the

content of the rhs at some non-
deterministic future timestep.

Table 2: Bloom operators.

ent kinds of state (Table 1). A table stores persistent data:
if a fact appears in a table, it remains in the table in fu-
ture timesteps (unless it is explicitly removed). A scratch
contains transient data—the content of scratch collections
is emptied at the start of each timestep. Scratches are akin
to SQL views: they are often useful as a way to name in-
termediate results or as a “macro” construct to enable code
reuse. The channel collection type enables communication
between Bloom instances. The schema of a channel has a
distinguished location specifier column (prefixed with “@”);
when a fact is derived for a channel collection, it appears in
the database of the Bloom instance at the address given by
the location specifier. The periodic and interface collec-
tion types do not arise in our discussion in this paper; the
interested reader is referred to the Bloom website [9].

2.1.2 Statements
Each Bloom statement has one or more input collections

and a single output collection. A statement takes the form:
<collection-identifier> <op> <collection-expression>

The left-hand side (lhs) is the name of the output collection
and the right-hand side (rhs) is an expression that produces
a collection. A statement defines how the input collections
are transformed before being included (via set union) in the
output collection. Bloom allows the usual relational operators
to be used on the rhs (selection, projection, join, grouping,
aggregation, and negation), although it adopts a syntax in-
tended to be more familiar to imperative programmers. In
Figure 1, line 11 demonstrates projection, lines 12–14 per-
form a join between link and path using the join predicate
link.to = path.from followed by a projection to four at-
tributes, and line 16 shows grouping and aggregation. Bloom
statements appear in one or more bloom blocks.

Bloom provides several operators that determine when the
rhs will be merged into the lhs (Table 2). The <= operator
performs standard logical deduction: that is, the lhs and rhs
are true at the same timestep. The <+ and <- operators indi-
cate that facts will be added or removed, respectively, from
the lhs collection at the beginning of the next timestep. The
<~ operator specifies that the rhs will be merged into the lhs
collection at some non-deterministic future time. The lhs of
a statement that uses <~ must be a channel; the <~ operator

3

captures asynchronous messaging.
Bloom allows recursion—i.e., the rhs of a statement can

reference the lhs collection, either directly or indirectly. As
in Datalog, certain constraints must be adopted to ensure that
programs with recursive statements have a sensible interpre-
tation. For deductive statements (<= operator), we require
that programs be syntactically stratified [6]: cycles through
negation or aggregation are not allowed (unless they contain
a deferred or asynchronous operator) [3].

2.2 CALM analysis
Work on deductive databases has long drawn a distinction

between monotonic and non-monotonic logic programs. Intu-
itively, a monotonic program only computes more informa-
tion over time—it will never “retract” a previous conclusion
in the face of additional evidence. In Bloom (and Datalog),
a simple conservative test for monotonicity is based on pro-
gram syntax: selection, projection, and join are monotonic,
while aggregation and negation are not.

The CALM theorem connects the theory of monotonic
logic with the practical problem of distributed consistency [2,
18]. All monotonic programs are “eventually consistent” or
confluent: for any given input, all program executions result in
the same final state regardless of network non-determinism [5,
25]. Hence, monotonic logic is a useful building block for
loosely consistent distributed programming.

According to the CALM theorem, distributed inconsistency
may only occur at points of order: program locations where
the output of an asynchronously derived value is consumed by
a non-monotonic operator [2]. This is because asynchronous
messaging results in non-deterministic arrival order, and non-
monotonic operators may produce different conclusions when
evaluated over different subsets of their inputs. For example,
consider a Bloom program consisting of a pair of collections
A and B (both fed by asynchronous channels) and a rule that
sends a message whenever an element of A arrives that is
not in B. This program is non-monotonic and exhibits non-
confluent behavior: the messages sent by the program will
depend on the order in which the elements of A and B arrive.

We have implemented a conservative static program anal-
ysis in Bloom that follows directly from the CALM theo-
rem. Programs that are free from non-monotonic constructs
are “blessed” as confluent: producing the same output on
different runs or converging to the same state on multiple
distributed replicas. Otherwise, programs are flagged as po-
tentially inconsistent. To achieve consistency, the program-
mer either needs to rewrite their program to avoid the use
of non-monotonicity or introduce a coordination protocol to
ensure that a consistent ordering is agreed upon at each of the
program’s points of order. Coordination protocols incur addi-
tional latency and reduce availability in the event of network
partitions, so in this paper we focus on coordination-free
designs—that is, monotonic programs.

1 QUORUM_SIZE = 5
2 RESULT_ADDR = "example.org"

4 class QuorumVote
5 include Bud

7 state do
8 channel :vote_chn, [:@addr, :voter_id]
9 channel :result_chn, [:@addr]
10 table :votes, [:voter_id]
11 scratch :cnt, [] => [:cnt]
12 end

14 bloom do
15 votes <= vote_chn {|v| [v.voter_id]}
16 cnt <= votes.group(nil, count(:voter_id))
17 result_chn <~ cnt {|c| [RESULT_ADDR] if c >= QUORUM_SIZE}
18 end
19 end

Figure 2: A non-monotonic Bloom program that waits
for a quorum of votes to be received.

2.2.1 Limitations of set monotonicity
The original formulation of the CALM theorem consid-

ered only programs that compute more facts over time—
that is, programs whose sets grow monotonically. Many dis-
tributed protocols make progress over time, but their no-
tion of “progress” is often difficult to represent as a grow-
ing set of facts. For example, consider the Bloom program
in Figure 2. This program receives votes from a client pro-
gram (not shown) via the vote_chn channel. Once at least
QUORUM_SIZE votes have been received, a message is sent
to a remote node to indicate that quorum has been reached
(line 17). This program resembles a “quorum vote” subrou-
tine that might be used by an implementation of Paxos [22]
or quorum replication [16].

Intuitively, this program makes progress in a semantically
monotonic fashion: the set of received votes grows and the
size of the votes collection can only increase, so once a
quorum has been reached it will never be retracted. Unfortu-
nately, the current CALM analysis would regard this program
as non-monotonic because it contains a point of order: the
grouping operation on line 16.

To solve this problem, we need to introduce a notion of
program values that “grow” according to a partial order other
than set containment. We do this by extending Bloom to
operate over arbitrary lattices, rather than just the set lattice.

3. ADDING LATTICES TO BLOOM
This section introduces BloomL, an extension to Bloom

that allows monotonic programs to be written using arbitrary
lattices. We begin by reviewing the algebraic properties of
lattices used in CRDTs and note the applicability of monotone
functions and morphisms in that context. We then introduce
the basic concepts of BloomL and detail the built-in lattices
provided by the language. We also show how users can define
their own lattice types.

When designing BloomL, we decided to extend Bloom
to include support for lattices rather than building a new

4

1 QUORUM_SIZE = 5
2 RESULT_ADDR = "example.org"

4 class QuorumVoteL
5 include Bud

7 state do
8 channel :vote_chn, [:@addr, :voter_id]
9 channel :result_chn, [:@addr]
10 lset :votes
11 lmax :cnt
12 lbool :quorum_done
13 end

15 bloom do
16 votes <= vote_chn {|v| v.voter_id}
17 cnt <= votes.size
18 quorum_done <= cnt.gt_eq(QUORUM_SIZE)
19 result_chn <~ quorum_done.when_true { [RESULT_ADDR] }
20 end
21 end

Figure 3: A monotonic BloomL program that waits for a
quorum of votes to be received.

language from scratch. Hence, BloomL is backward compati-
ble with Bloom and was implemented with relatively minor
changes to the Bud runtime. We describe how code written
using lattices can interoperate with traditional Bloom collec-
tions in Section 3.5.

3.1 Definitions
A bounded join semilattice is a triple 〈S ,t,⊥〉, where S

is a set, t is a binary operator (called “join” or “least upper
bound”), and ⊥ ∈ S . The operator t is associative, commuta-
tive, and idempotent. The t operator induces a partial order
≤S on the elements of S : x ≤S y if x t y = y. Note that
although ≤S is only a partial order, the least upper bound is
defined for all elements x, y ∈ S . The distinguished element
⊥ is the smallest element in S : x t ⊥ = x for every x ∈ S .
For brevity, we use the term “lattice” to mean “bounded join
semilattice” in the rest of this paper. We use the informal term
“merge function” to mean “least upper bound.”

A monotone function from poset S to poset T is a function
f : S → T such that ∀a, b ∈ S : a ≤S b ⇒ f (a) ≤T f (b).
That is, f maps elements of S to elements of T in a manner
that respects the partial orders of both posets.

A morphism from lattice 〈X,tX ,⊥X〉 to lattice 〈Y,tY ,⊥Y〉

is a function g : X → Y such that, ∀a, b ∈ X : g(a tX b) =

g(a)tY g(b). That is, g allows elements of X to be mapped to
elements of Y in a way that preserves the lattice properties.
Note that morphisms are monotone functions but the converse
is not true in general.

3.2 Language concepts
BloomL allows both lattices and collections to represent

state. A lattice is analogous to a collection type in Bloom,
while a lattice element corresponds to a particular collection.
For example, the lset lattice is similar to the table collec-
tion type provided by Bloom; an element of the lset lattice
is a particular set. In the terminology of object-oriented pro-

gramming, a lattice is a class that obeys a certain interface
and an element of a lattice is an instance of that class. Figure 3
contains an example BloomL program.

As with collections, the lattices used by a BloomL program
are declared in a state block. More precisely, a state block
declaration introduces an identifier that is associated with a
lattice element; over time, the binding between identifiers and
lattice elements is updated to reflect state changes in the pro-
gram. For example, line 10 of Figure 3 declares an identifier
votes that is mapped to an element of the lset lattice. As
more votes are received, the lattice element associated with
the votes identifier changes (it moves “upward” in the lset
lattice). When a lattice identifier is declared, it is initially
bound to the value ⊥, the smallest element in the lattice. For
example, an lset lattice initially contains the empty set.

3.2.1 Statements in BloomL

Statements take the same form in both Bloom and BloomL:
<identifier> <op> <expression>

The identifier on the lhs can refer to either a set-oriented
collection or a lattice element. The expression on the rhs can
contain both traditional relational operators (applied to Bloom
collections) and methods invoked on lattices. Lattice methods
are similar to methods in an object-oriented language and are
invoked using the standard Ruby method invocation syntax.
For example, line 17 of Figure 3 invokes the size method on
an element of the lset lattice.

If the lhs is a lattice, the statement’s operator must be either
<= or <+ (instantaneous or deferred deduction, respectively).
The meaning of these operators is that, at either the current
or the following timestep, the lhs identifier will take on the
result of applying the lattice’s least upper bound to the lhs
and rhs lattice elements. The intuition remains the same as in
Bloom: the rhs value is “merged into” the lhs lattice, except
that the semantics of the merge operation are defined by the
lattice’s least upper bound operator. We require that the lhs
and rhs refer to a lattice of the same type.

BloomL does not support deletion (<- operator) for lattices.
Lattices do not directly support asynchronous communication
(via the <~ operator) but lattice elements can be embedded
into tuples that appear in channels (Section 3.5.2).

3.2.2 Lattice methods
BloomL statements compute values over lattices by in-

voking methods on lattice elements. Just as a subset of the
relational algebra is monotonic, some lattice methods are
monotone functions (as defined in Section 3.1). A monotone
lattice method guarantees that, if the lattice on which the
method is invoked grows (according to the lattice’s partial
order), the value returned by the method will grow (accord-
ing to the return value’s lattice type). For example, the size
method provided by the lset lattice is monotone because
as more elements are added to the set, the size of the set
increases. From a CRDT perspective, a lattice’s monotone
methods constitute a “safe” interface of operations that can be

5

Name Description Least element (⊥) Merge(a, b) Morphisms Monotone functions
lbool Boolean lattice

(false→ true)
false a ∨ b when_true(&blk)→ v

lmax Max over an
ordered domain

−∞ max(a, b) gt(n)→ lbool
gt_eq(n)→ lbool
+(n)→ lmax
−(n)→ lmax

lmin Min over an
ordered domain

∞ min(a, b) lt(n)→ lbool
lt_eq(n)→ lbool
+(n)→ lmin
−(n)→ lmin

lset Set of values empty set a ∪ b intersect(lset)→ lset
project(&blk)→ lset
product(lset)→ lset
contains?(v)→ lbool

size()→ lmax

lpset Set of non-
negative numbers

empty set a ∪ b intersect(lpset)→ lpset
project(&blk)→ lpset
product(lpset)→ lpset
contains?(v)→ lbool

size()→ lmax
sum()→ lmax

lbag Multiset of values empty multiset a ∪ b intersect(lbag)→ lbag
project(&blk)→ lbag
card(v)→ lmax
contains?(v)→ lbool
+(lbag)→ lbag

size()→ lmax

lmap Map from keys to
lattice values

empty map see text intersect(lmap)→ lmap
project(&blk)→ lmap
key_set()→ lset
at(v)→ any-lattice
key?(v)→ lbool

size()→ lmax

Table 3: Built-in lattices in BloomL. Note that v denotes a Ruby value, n denotes a number, and blk indicates a Ruby
code block (anonymous function).

invoked in a distributed setting without risk of inconsistency.
A lattice method’s signature indicates its monotonicity

properties. BloomL distinguishes between methods that are
monotone and a subset of monotone methods that are mor-
phisms. Section 3.1 defines the properties that a morphism
must satisfy, but the intuition is that a morphism on lattice
T can be distributed over T ’s least upper bound. For exam-
ple, the size method provided by the lset lattice is not a
morphism. To see why, consider two elements of the lset
lattice, {1, 2} and {2, 3}. size is not a morphism because
size({1, 2} tlset {2, 3}) , size({1, 2}) tlmax size({2, 3}). Mor-
phisms can be evaluated more efficiently than monotone meth-
ods, as we discuss in Section 4.1.

Lattices can also define non-monotonic methods. Using
a non-monotonic lattice method is analogous to using a
non-monotonic relational operator in Bloom: the Bud inter-
preter stratifies the program to ensure that the input value is
computed to completion before allowing the non-monotonic
method to be invoked. BloomL encourages developers to min-
imize the use of non-monotonic constructs: as the CALM
analysis suggests, non-monotonic reasoning may need to be
augmented with coordination to ensure consistent results.

Every lattice defines a non-monotonic revealmethod that
returns a representation of the lattice element as a plain Ruby
value. For example, the reveal method on an lset lattice
returns a Ruby array containing the contents of the set. This
method is non-monotonic because once the underlying Ruby

value has been extracted from the set, BloomL cannot ensure
that subsequent code uses the value in a monotonic fashion.

3.3 Built-in lattices
Table 3 lists the lattices included with BloomL. The built-

in lattices provide support for several common notions of
“progress”: a predicate that moves from false to true (lbool),
a numeric value that strictly increases or strictly decreases
(lmax and lmin, respectively), and various kinds of collec-
tions that grow over time (lset, lpset, lbag, and lmap).
The behavior of most of the lattice methods should be unsur-
prising, so we do not describe every method in this section.

The lbool lattice represents conditions that, once satisfied,
remain satisfied. For example, the gt morphism on the lmax
lattice takes a numeric argument n and returns an lbool;
once the lmax exceeds n, it will remain > n. The when_true
morphism takes a Ruby block; if the lbool element has the
value true, when_true returns the result of evaluating the
block. For example, see line 19 in Figure 3. when_true is
similar to an “if” statement.2

The collection-like lattices support familiar operations
such as union, intersection and testing for the presence of an
element in the collection. The project morphism takes a
code block and forms a new collection by applying the code
block to each element of the input collection. Elements for

2Observe that an “else” clause would test for an upper bound on the
final lattice value, which is a non-monotonic property!

6

1 class Bud::SetLattice < Bud::Lattice
2 wrapper_name :lset

4 def initialize(x=[])
5 # Input validation removed for brevity
6 @v = x.uniq # Remove duplicates from input
7 end

9 def merge(i)
10 self.class.new(@v | i.reveal)
11 end

13 morph :intersect do |i|
14 self.class.new(@v & i.reveal)
15 end

17 morph :contains? do |i|
18 Bud::BoolLattice.new(@v.member? i)
19 end

21 monotone :size do
22 Bud::MaxLattice.new(@v.size)
23 end
24 end

Figure 4: Example implementation of the lset lattice.

which the code block returns nil are omitted from the output
collection, which allows project to be used as a filter.

The lmap lattice associates keys with values. Keys are
immutable Ruby objects and values are lattice elements. For
example, a web application could use an lmap to associate
session IDs with an lset containing the pages visited by that
session. The lmap merge function takes the union of the key
sets of its input maps. If a key occurs in both inputs, the two
corresponding values are merged using the appropriate lattice
merge function. Note that the at(v) morphism returns the
lattice element associated with key v (or ⊥ if the lmap does
not contain v).

The lpset lattice is an example of how BloomL can be
used to encode domain-specific knowledge about an appli-
cation. If the developer knows that a set will only contain
non-negative numbers, the sum of those numbers increases
monotonically as the set grows. Hence, sum is a monotone
function of lpset.

3.4 User-defined lattices
The built-in lattices are sufficient to express many pro-

grams. However, BloomL also allows developers to create
custom lattices to capture domain-specific behavior. To define
a new lattice, a developer creates a Ruby class that meets a
certain API contract. Figure 4 shows a simple implementation
of the lset lattice using a Ruby array for storage.3

A lattice class must inherit from the built-in Bud::Lattice
class and must also define two methods:
• initialize(i): given a Ruby object i, this method

constructs a new lattice element that “wraps” i (this is
the standard Ruby syntax for defining a constructor). If
i is nil (the null reference), this method returns ⊥, the

3We omit a few lset methods for brevity. While we use an array
for simplicity, this is inefficient (e.g., duplicate elimination requires
linear time). The built-in lset uses a hash-based set data type.

least element of the lattice.
• merge(e): given a lattice element e, this method re-

turns the least upper bound of self and e. This method
must satisfy the algebraic properties of least upper
bound as summarized in Section 3.1—in particular,
it must be commutative, associative, and idempotent.
Note that e and self must be instances of the same class.

Lattices can also define any number of monotone functions,
morphisms, and non-monotonic methods. The syntax for
declaring morphisms and monotone functions can be seen
in lines 13–15 and 21–23 of Figure 4, respectively. Note
that lattice elements are immutable—that is, lattice methods
(including merge methods) must return new values, rather
than destructively modifying any of their inputs.

Custom lattices must define a keyword that can be used in
BloomL state blocks. This is done using the wrapper_name
class method. For example, line 2 of Figure 4 means that
“lset :foo” in a state block will introduce an identifier foo
that is associated with an instance of Bud::SetLattice.

3.5 Integration with set-oriented logic
BloomL provides two features to ease integration of lattice-

based code with Bloom rules that use set-oriented collections.

3.5.1 Converting collections into lattices
This feature enables an intuitive syntax for merging the

contents of a set-oriented collection into a lattice. If a state-
ment has a Bloom collection on the rhs and a lattice on the lhs,
the collection is converted into a lattice element by “folding”
the lattice’s merge function over the collection. That is, each
element of the collection is converted to a lattice element (by
invoking the lattice constructor) and then the resulting lattice
elements are merged together via repeated application of the
lattice’s merge method. In our experience, this is usually the
behavior intended by the user.

For example, line 16 of Figure 3 contains a Bloom collec-
tion on the rhs and an lset lattice on the lhs. This statement
is implemented by constructing a singleton lset for each
fact in the rhs collection and then merging the sets together.
The resulting lset is then merged with the votes lattice
referenced by the lhs.

3.5.2 Collections with embedded lattice values
BloomL allows lattice elements to be used as columns

of tuples in Bloom collections. This feature allows BloomL

programs to use a mixture of Bloom-style relational operators
and lattice method invocations, depending on which is more
convenient. Bloom also provides several collection types with
special semantics (e.g., channels, durable storage); allowing
lattice elements to be embedded into collections avoids the
need to create a redundant set of facilities for lattices.

Consider a simple BloomL statement that derives tuples
with an embedded lattice element as a column:

t1 <= t2 {|t| [t.x, cnt]}

where t1 and t2 are Bloom collections, cnt is a lattice, and

7

the key of t1 is its first column. Note that cnt might change
over the course of a single timestep (specifically, cnt can
move “upward” according to the lattice’s partial order). This
might result in multiple tuples t1 tuples that differ only in
the second column, which would violate t1’s key.

To resolve this situation, BloomL allows multiple facts to
be derived that differ only in their embedded lattice values;
those facts are merged into a single fact using the lattice’s
merge function. This is similar to specifying a procedure
for how to resolve key constraint violations, a feature sup-
ported by some databases [28, 36]. For similar reasons, lattice
elements cannot be used as keys in Bloom collections.

3.6 Confluence in BloomL

We now describe how the notion of confluence (invariance
to message reordering) can be generalized from Bloom to
BloomL programs. In recent work, we provided a model-
theoretic characterization of confluence for programs writ-
ten in Dedalus, the formal language on which Bloom is
based [25]. These results apply directly to Bloom, whose
semantics are grounded in those of Dedalus. The result of a
distributed computation performed in Bloom may be viewed
as the set of ultimate models or eventual states of the pro-
gram, given a fixed input and sufficient time for messages to
be delivered. If a program has exactly one ultimate model for
every input, we say that it is confluent: all message delivery
orders result in the same eventual state.

To reason about confluence in BloomL, we first observe
that lattices are guaranteed to have inflationary behavior over
time: a lattice value only increases. Hence if we include lat-
tices in the output of an otherwise confluent BloomL program,
they will not increase the number of ultimate models. It is not
enough, however, that this local property of lattice objects
holds: we must also show that anything a BloomL program
does with a lattice value is monotonic. Monotone lattice func-
tions provide a mechanism for reasoning about composition
of lattices or between lattices and collections. By including
monotone lattice functions among the “safe,” monotonic con-
structs provided by the Bloom language, we can easily extend
our CALM analysis to BloomL.

4. IMPLEMENTATION
In this section, we describe how to evaluate BloomL pro-

grams. First, we generalize semi-naive evaluation to support
lattices. We validate that our implementation of semi-naive
evaluation results in significant performance gains and is
competitive with the traditional set-oriented semi-naive eval-
uation scheme in Bud. We also describe how we extended
Bud to add support for BloomL with relatively few changes.

4.1 Semi-naive evaluation
Naive evaluation is a simple but inefficient approach to

evaluating recursive Datalog programs. Evaluation proceeds
in “rounds.” In each round, all the rules in the program are
evaluated over the entire database, including all derivations

made in previous rounds. This process stops when a round
makes no new derivations. Naive evaluation is inefficient
because it makes many redundant derivations: once a fact has
been derived in round i, it is rederived in every round > i.

Semi-naive evaluation improves upon naive evaluation by
making fewer redundant derivations [7]. Let ∆0 represent
the initial database state. In the first round, all the rules are
evaluated over ∆0; let ∆1 represent the new facts derived in
this round. In the second round, we only need to compute
derivations that are dependent on ∆1 because everything that
can be derived purely from ∆0 has already been computed.

A similar evaluation strategy works for BloomL statements
that use lattice morphisms. For a given lattice identifier l, let
∆0

l represent the lattice element associated with l at the start
of the current timestep. Let ∆r

l represent the new derivations
for l that have been made in evaluation round r. During round
one, the program’s statements are evaluated and l is mapped
to ∆0

l ; this computes ∆1
l . In round two, l is now mapped to

∆1
l and evaluating the program’s statements yields ∆2

l . This
process continues until ∆i

l = ∆i+1
l for all identifiers l. The

final value for l is given by
⊔i

l: j=0 ∆
j
l .

This optimization cannot be used for monotone functions
that are not morphisms. This is because semi-naive evaluation
requires that we apply functions to the partial results derived
in each round k into ∆k

l , and later combine them using the lat-
tice’s merge operation—effectively distributing the function
across the merge. For example, consider computing the lset
lattice’s size method, which returns an lmax lattice. The
semi-naive strategy would compute

⊔i
lmax: j=0 size(∆ j

lset
)—

the maximum of the sizes of the incremental results produced
in each round. Thus it produces a different result than naive
evaluation, which evaluates the size function against the
complete database state in each round.

Implementing semi-naive style evaluation for lattices was
straightforward. For each lattice identifier l, we record two
values: a “total” value (the least upper bound of the deriva-
tions made for l in all previous rounds) and a “delta” value
(the least upper bound of the derivations made for l in the last
round). We implemented a program rewrite that examines
each BloomL statement. If a statement only applies mor-
phisms to lattice elements, the rewrite adjusts the statement
to use the lattice’s delta value rather than its total value.

4.2 Performance validation
To validate the effectiveness of semi-naive evaluation for

BloomL programs, we wrote two versions of a program to
compute the transitive closure of a directed acyclic graph. One
version was written in Bloom and used Bloom collections.
The other version was written in BloomL using morphisms
over the lset lattice. For the BloomL version, we ran the
program both with and without semi-naive evaluation enabled.
As input, we generated synthetic graphs of various sizes—in
a graph with n nodes, each node had roughly log2 n outgoing
edges. We ran the experiment using a 2.13 Ghz Intel Core 2
Duo processor and 4GB of RAM, running Mac OS X 10.7.4

8

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250

R
u

n
tim

e
 (

s
e

c
)

Graph size (number of paths, 1000s)

Bloom
Lattice (S-Naive)

Lattice (Naive)

Figure 5: Performance of three different methods for
computing the transitive closure of a graph.

and Ruby 1.9.3-p194. We ran each program variant five times
on each graph and report the mean elapsed wall-clock time.

Figure 5 shows how the runtime of each program varied
with the size of the graph. Note that we only report results
for the naive BloomL strategy on small input sizes because
this variant ran very slowly as the graph size increased. The
poor performance of naive evaluation is not surprising: after
deriving all paths of length n, naive evaluation will then red-
erive all those paths at every subsequent round of the fixpoint
computation. In contrast, after computing length n paths, a
semi-naive strategy will only generate length n + 1 paths
in the next round. Bloom and semi-naive BloomL achieve
similar results. We instrumented Bud to count the number
of derivations made by the Bloom and semi-naive lattice
variants—as expected, both programs made a similar number
of derivations. These results suggest that our implementation
of semi-naive evaluation for BloomL is effective and performs
comparably with a traditional implementation of semi-naive
evaluation for sets.

For large inputs, Bloom began to outperform the semi-
naive lattice variant. We suspect this is because the lattice
implementation copies more data than Bloom does for this
benchmark. Lattice elements are immutable, so the lset
merge function allocates a new object to hold the result of the
merge. In contrast, Bloom collections are modified in-place.
We plan to improve the lattice code to avoid copies when it
can determine that in-place updates are safe.

4.3 Modifying Bud
We were able to extend Bud to support BloomL with rel-

atively minor changes. Bud initially had about 7200 lines
of Ruby source code (LOC). The core lattice features (the
Bud::Lattice base class and the mapping from identifiers
to lattice elements) required about 300 LOC. Modifying
Bud’s fixpoint logic to include lattices required only 10 LOC,
while the program rewriting required to enable semi-naive
evaluation required 100 LOC. Modifying Bud’s collection
classes to support merging of embedded lattice values re-
quired adding or modifying about 125 LOC. The built-in

1 module KvsProtocol
2 state do
3 channel :kvput, [:reqid, :@addr] => [:key, :val,
4 :client_addr]
5 channel :kvput_resp, [:reqid] => [:@addr, :replica_addr]
6 channel :kvget, [:reqid, :@addr] => [:key, :client_addr]
7 channel :kvget_resp, [:reqid] => [:@addr, :val,
8 :replica_addr]
9 end
10 end

Figure 6: Key-value store interface.

1 class KvsReplica
2 include Bud
3 include KvsProtocol

5 state { lmap :kv_store }

7 bloom do
8 kv_store <= kvput {|c| {c.key => c.val}}
9 kvput_resp <~ kvput {|c| [c.reqid, c.client_addr, ip_port]}
10 kvget_resp <~ kvget {|c| [c.reqid, c.client_addr,
11 kv_store.at(c.key), ip_port]}
12 end
13 end

Figure 7: KVS replica implementation in BloomL.

lattice classes constituted an additional 300 LOC. In total,
adding support for BloomL required less than 900 lines of
added or modified code, and took about two person-months
of engineering time.

5. CASE STUDY: KEY-VALUE STORE
The next two sections contain case studies that show how

BloomL can be used to build correct distributed programs.
Both case studies are monotonic: that is, both programs con-
sist of monotone functions applied to lattices. As a result, the
BloomL compiler can verify that both of them are eventually
consistent without any need for coordination.4

In the first case study, we show that a distributed, eventu-
ally consistent key-value store can be composed via a series
of monotonic mappings between simple lattices. This exam-
ple highlights the way that BloomL overcomes the “scope
dilemma” of CRDTs: by composing a complex program from
simple lattices (mostly BloomL built-ins), we can feel confi-
dent that individual lattices are correct, while CALM analysis
finishes the job of verifying whole-program correctness.

5.1 Basic Architecture
A key-value store (KVS) provides a lookup service that

allows client applications to retrieve the value associated with
a given key. In a typical KVS, key-value pairs are replicated
on multiple server replicas for redundancy and the key space
is partitioned in some fashion to improve aggregate storage
and throughput. Eventual consistency is a common correct-
ness criterion: after all client updates have reached all storage

4Full code listings for these case studies are available at
http://db.cs.berkeley.edu/bloom-lattice.

9

lmap

key lpair

lmap

node ID lmax

user-lattice

Vector Clock

Key-Value Store

<Version, Value> Pair

User-Defined
Merge Function

Figure 8: Lattice structure of a KVS with object version-
ing. Rectangles are lattices and ovals are atomic values.

nodes, all the replicas of a key-value pair will converge to the
same final state [39, 41].

Figure 6 shows a simple KVS interface in BloomL. Client
applications submit get(key) and put(key, val) operations by
inserting into the kvget and kvput channels, respectively;
server replicas return responses via the kvget_resp and
kvput_resp channels.

Figure 7 contains the BloomL code for a KVS server
replica. An lmap lattice is used to maintain the mapping
between keys and values (line 5). Since the values in an
lmap lattice must themselves be lattice elements, for now
we assume that clients only want to store and retrieve lat-
tice values; we discuss how to support arbitrary values in
Section 5.2. To handle a put(key, val) request, a new key→
val lmap is created and merged into kv_store (line 8). If
kv_store already contains a value for the given key, the
two values will be merged together using the value lattice’s
merge function (see Section 3.3 for details). Note that we use
the BloomL features described in Section 3.5 to allow tradi-
tional Bloom collections (e.g., channels) and lattices (e.g.,
the kv_store lattice) to be used by the same program. Note
also that ip_port is a built-in function that returns the IP
address and port number of the current Bud instance.

The state of two replicas can be synchronized by simply
exchanging their kv_store maps; the lmap merge function
will automatically resolve all conflicting updates made to the
same key. This property allows considerable flexibility in how
replicas propagate updates.

5.2 Object Versioning
The basic KVS design is sufficient for applications that

want to store monotonically increasing values, such as session
logs or increasing counters. To allow storage of values that
change in arbitrary ways, we now consider how to support
object versions. This is a classic technique for recognizing
and resolving mutual inconsistency between members of a
distributed system [30]; our design is similar to that used by
Amazon Dynamo [10].

Each replica associates keys with 〈vector-clock, value〉 pairs.
The vector clock (VC) captures the causal relationship be-
tween different versions of a record [13, 26, 10]. Clients get
and put 〈vector-clock, value〉 pairs. When a client updates a
value it has previously read, the client increments its own
position in the VC and includes the updated vector clock VU

with its put operation. Upon receiving an update, the server
compares VU with the VC of the server’s version of the record
(VS). If VU > VS , the server replaces the stored record with
the client’s update. If VS > VU , the update is ignored (this
situation might arise due to duplication and reordering of
messages by the network). If VU and VS are incomparable,
the two versions are concurrent, so a client-supplied reconcil-
iation function is used to resolve the conflict.

From a BloomL perspective, each replica still stores a
monotonically increasing value—the only difference is that
in this scheme, the version stored by a replica increases over
time, rather than the associated value. Hence, we now con-
sider how to support vector clocks and version-value pairs
using BloomL.

5.2.1 Vector Clocks
Vector clocks are a well-known mechanism for recording

the causal relationships between events [13, 21]. A vector
clock is a map from node identifiers to logical clocks. Let
Ve denote the vector clock for event e; let Ve(n) denote the
logical clock associated with node n in Ve. If Ve < Ve′ , e
causally precedes e′, where

Ve < Ve′ ≡ ∀x[Ve(x) ≤ Ve′ (x)] ∧ ∃y[Ve(y) < Ve′ (y)]

In BloomL, a vector clock can be represented as an lmap that
maps node identifiers to lmax values. Each lmax represents
the logical clock of a single node; this is appropriate because
the logical clock value associated with a given node will
only increase over time. The merge function provided by
lmap achieves the desired semantics—that is, the default
least upper bound for an lmap that contains lmax values is
consistent with the partial order given above.

5.2.2 Version-Value Pairs
We now turn to representing 〈vector-clock, value〉 pairs.

To do this, we define a new lattice lpair that “wraps” two
lattice elements; we use fst and snd to refer to the first and
second elements of an lpair, respectively. The discussion
above suggests a natural least upper bound for lpair:

A t B =

A if A.fst > B.fst
B if A.fst < B.fst
〈A.fst t B.fst, A.snd t B.snd〉 otherwise

This implements the desired semantics: given two candidate
values for a key, the candidate with the strictly greater ver-
sion number should be preferred. When the two versions are
incomparable, a new lpair should be formed by merging
both elements of the input pairs with one another. In the case
of the KVS, fst is a vector clock, while snd is the user’s

10

data; the least upper bound of the snd lattice corresponds to a
user-defined merge function.5

Note that while the fst of a given lpair increases over
time (as new versions are received), the snd may not (a newer
version might contain a “smaller” snd). Again, this is the
desired behavior.

5.2.3 Discussion
Figure 8 shows the lattices used in the KVS with object

versioning. Surprisingly, adding support for object versioning
did not require any changes to the KVS replica code! Instead,
clients simply store lpair values containing a vector clock
as the first element and increment their position in the vector
clock when submitting updates. The KVS replica merges
these lpair values into an lmap as usual; the merge function
of lpair handles conflict resolution in the appropriate man-
ner. Moreover, by composing the KVS from a collection of
simple lattices, we found it easy to reason about the behavior
of the system. For example, convincing ourselves that the
KVS replicas will eventually converge only required check-
ing that the individual lmap, lmax, and lpair lattices satisfy
the lattice properties, rather than analyzing the behavior of
the system as a whole.

Our design compares favorably to traditional implemen-
tations of object versioning and vector clocks. For example,
the implementation of vector clocks alone in Voldemort (a
popular key-value store) requires 216 lines of Java, not includ-
ing whitespace or comments [23]. In BloomL, vector clocks
follow directly from the composition of the lmap and lmax
lattices; the entire KVS requires less than 100 lines of Ruby
and BloomL code, including the client library. The lpair lat-
tice requires an additional lines 30 of Ruby but is completely
generic, and could be included as a built-in lattice.

5.3 Quorum Reads and Writes
To further demonstrate the flexibility of our implementa-

tion, we add an additional feature to our KVS: the ability to
submit reads and writes to a configurable number of nodes.
If a client reads from R nodes and writes to W nodes in a
KVS with N replicas, the user can set R + W > N to achieve
behavior equivalent to a quorum replication system [16], or
use smaller values of R and W if eventual consistency is
sufficient. This scheme allows users to vary R and W on a per-
operation basis, depending on their consistency and durability
requirements.

To support this feature, we can use the BloomL quorum
voting pattern first introduced in Figure 3. After sending a
write to W systems, the KVS client accumulates kvput_resp
messages into an lset. Testing for quorum can be done in a
monotonic fashion by mapping the lset to an lmax (using
the size method), and then performing a threshold test using
5If the user stores a value that does not have a natural merge func-
tion, similar systems typically provide a default merge function
that collects conflicting updates into a set for eventual manual res-
olution by the user. Such a strategy could easily be implemented
monotonically with BloomL.

CartClient

CartReplica

CartReplica

CartReplica

Payment
Gateway

Item Add/Remove

Checkout
Request/Response

Figure 9: Shopping cart system architecture.

gt_eq on lmax. As expected, this is monotonic: once quorum
has been reached, it will never be retracted.

Quorum reads work in a similar fashion, except that the
client must also merge together the R versions of the record
it receives. This follows naturally from the discussion in Sec-
tion 5.2: the client simply takes the least upper bound of the
values it receives, which produces the expected behavior. The
client can optionally write the merged value back to the KVS
(so-called “read repair” [10]); note that the lpair merge
method also updates the record’s vector clock appropriately.

6. CASE STUDY: SHOPPING CARTS
In the previous section, we showed how a complete, con-

sistent distributed program can be composed via monotonic
mappings between simple lattice types. In this section, we
focus on the way that BloomL enables us to overcome the
“type dilemma” of Bloom, by demonstrating the use of cus-
tom lattice types. Our previous implementation of this case
study in Bloom called for coordination due to apparently-
nonmonotonic grouping and aggregation [2]; by using cus-
tom lattice types in the implementation here, we enable the
BloomL CALM analysis to verify eventual consistency with-
out any coordination.

In this case study, we consider a simple e-commerce sys-
tem in which clients interact with a shopping cart service by
adding and removing items over the course of a shopping
session (Figure 9). The cart service is replicated to improve
fault tolerance; client requests can be routed to any of the cart
replicas. Eventually, a client submits a “checkout” operation,
at which point the cumulative effect of their shopping session
should be summarized and returned to the client. In a prac-
tical system, the result of the checkout operation might be
presented to the client for confirmation or submitted to a pay-
ment processor to complete the e-commerce transaction. This
case study is based on the cart system from Alvaro et al. [2],
which was in turn inspired by the discussion of replicated
shopping carts in the Dynamo paper [10].

Alvaro et al. discuss two different designs: a “disorderly”
version in which the cart state is represented as a set of op-

11

1 module CartProtocol
2 state do
3 channel :action_msg,
4 [:@server, :session, :reqid] => [:item, :cnt]
5 channel :checkout_msg,
6 [:@server, :session, :reqid] => [:lbound, :addr]
7 channel :response_msg,
8 [:@client, :session] => [:summary]
9 end
10 end

12 module MonotoneReplica
13 include CartProtocol

15 state { lmap :sessions }

17 bloom do
18 sessions <= action_msg do |m|
19 c = LCart.new({m.reqid => [ACTION, m.item, m.cnt]})
20 { m.session => c }
21 }
22 sessions <= checkout_msg do |m|
23 c = LCart.new({m.reqid => [CHECKOUT, m.lbound, m.addr]})
24 { m.session => c }
25 }

27 response_msg <~ sessions do |session, c|
28 c.is_complete.when_true {
29 [c.checkout_addr, session, c.summary]
30 }
31 end
32 end
33 end

Figure 10: Cart server replica in BloomL that supports a
monotonic (coordination-free) checkout operation.

erations (allowing monotonic accumulation of adds and re-
moves) and a “destructive” version in which the cart state is
managed by a key-value store, which requires a non-monotonic
update on each cart action.

6.1 Monotonic checkout
For both the “disorderly” and “destructive” designs, Al-

varo et al. argue that processing a checkout request is non-
monotonic because it requires aggregating over an asyn-
chronously computed data set—in general, coordination might
be required to ensure that all inputs have been received before
the checkout response can be returned to the client. However,
observe that the client knows exactly which add and remove
operations should be reflected in the result of the checkout.
If that information can be propagated to the cart service, any
server replica can decide if it has enough information to pro-
cess the checkout operation without needing additional coor-
dination. This design is monotonic: once a checkout response
is produced, it will never change or be retracted. Our goal is
to translate this design into a monotonic BloomL program.

Figure 10 contains the server code for this design (we
omit the client code for the sake of brevity). Communica-
tion with the client occurs via the channels declared in the
CartProtocol module. We represent the state of a server
replica using an lmap lattice that associates session IDs with
lcart lattice elements. lcart is a custom lattice that repre-
sents the state of a single shopping cart. An lcart contains
a set of client operations. Each operation has a unique ID;

operation IDs are assigned by the client in increasing nu-
meric order without gaps. An lcart contains two kinds of
operations, actions and checkouts. An action describes the
addition or removal of an item from the cart. An lcart con-
tains at most one checkout operation—the checkout specifies
the smallest operation ID that must be reflected in the result
of the checkout, along with the address where the checkout
response should be sent. Lines 19 and 23 construct lcart
elements that contain a single action or checkout operation,
respectively. These singleton carts are then merged with the
previous cart state associated with the client’s session, if any.

An lcart is complete if it contains a checkout operation
as well as all the actions in the ID range identified by the
checkout. Hence, testing whether an lcart is complete is
a monotone function: it is similar to testing whether an ac-
cumulating set has crossed a threshold. Hence, if any server
replica determines that it has a complete cart, it can send a
response to the client without risking inconsistency. Without
coordination, the client might receive multiple responses but
they will all reflect the same cart contents.

Note that the statement that produces a response to the
client (lines 27–31) is contingent on having a complete cart.
summary is a monotone method that returns a summary of
the actions in the cart—an exception is raised if summary
is called before the cart is complete. Similarly, attempts to
construct “illegal” lcart elements (e.g., carts containing
multiple checkout operations or actions that are outside the
ID range specified by the checkout) also result in runtime
exceptions, since this likely indicates a logic error in the
program. Implementing the lcart lattice required 58 lines
of Ruby using the lattice API described in Section 3.4.

7. RELATED WORK
This paper relates to work on concurrency control, dis-

tributed storage, and non-monotonic logic programming.

Semantics-based concurrency control: The traditional cor-
rectness criteria for concurrency control schemes is serial-
izability [29]. However, ensuring serializability can be pro-
hibitively expensive, for instance when transactions are long-
running or the nodes of a distributed database are connected
via an unreliable network. Thus, many methods have been
proposed to allow non-serializable transaction schedules that
preserve some semantic notion of correctness. In particular,
several schemes allow users to specify that certain operations
can be commuted with other operations; this enlarges the
space of legal schedules, increasing the potential for concur-
rency [12, 14, 42].

O’Neil describes a method for supporting “escrow” trans-
actions, which allow operations that are only commutative
when a certain limited resource is available [27]. For exam-
ple, credits and debits to a bank account might only commute
if the bank account balance can be guaranteed to be non-
negative. We are currently exploring how to add support for
escrow operations to BloomL.

To support concurrent editing of shared documents, the

12

groupware community has studied a family of algorithms
known as Operational Transformations (OT) [11, 37]. Many
OT algorithms have been proposed but the correctness cri-
teria is typically familiar: after quiesence, all replicas of the
document should converge to the same final state, the causal
relationship between operations should be preserved, and the
final state of the document should reflect the semantic intent
of each user’s editing operations [38].

Commutativity in distributed systems: Many distributed
systems allow users to specify that certain operations are
commutative, associative, or idempotent. Helland and Camp-
bell observe that using commutative, associative and idempo-
tent operations is particularly valuable as systems scale and
guaranteeing global serializability becomes burdensome [17].
Many distributed storage systems allow users to provide
“merge functions” that are used to resolve write-write conflicts
between replicas, allowing the system to eventually reach a
consistent state (e.g., [10, 19, 24, 31, 39]).

Shapiro et al. recently proposed Conflict-free Replicated
Data Types (CRDTs), a principled approach to the design
of loosely consistent data values [35]. Shapiro et al. provide
a formal model for convergence based on join semilattices
and a catalog of practical CRDT designs [34]. CRDTs and
BloomL lattice types often follow similar design patterns to
achieve coordination-free convergence. Unlike BloomL, the
CRDT approach considers the correctness of replicated val-
ues in isolation. This allows CRDTs to be more easily adapted
into standalone libraries (e.g., Statebox [19]). However, the
narrow focus of CRDTs means that, even if a CRDT is correct,
application state may remain inconsistent (Section 1).

Non-monotonicity in deductive databases: Adding non-
monotonic operators to Datalog increases the expressiveness
of the language but introduces significant complexities: un-
restricted use of non-monotonicity would allow programs
that imply logical contradictions (e.g., “p if ¬p”). A simple
solution is to disallow recursion through aggregation or nega-
tion, which admits only the class of “stratified programs” [6].
Many attempts have been made to assign a semantics to larger
classes of programs (e.g., [15, 32, 40]).

The observation that many uses of aggregation and nega-
tion have a “monotonic” flavor has been made before. Ross
and Sagiv study a class of programs that include “monotonic”
aggregates [33]. They propose a model-theoretic semantics
for this class of programs that is similar to our semantics
for BloomL in Section 3. Our work differs from Ross and
Sagiv’s in several respects: most notably, they use lattices as
a way to characterize classes of Datalog programs, whereas
we propose BloomL as a practical programming language.
Accordingly, Ross and Sagiv restrict the usage of monotone
aggregates to a single “cost” argument in certain predicates,
do not allow user-defined lattices, and do not propose a frame-
work for arbitrary lattices to be composed safely.

Köstler et al. consider Datalog extended with subsump-
tion relations, which allows the user to indicate that certain

deductions should be “preferred” over others [20]. These
preferences must form a lattice; Köstler et al. then propose
a model-theoretic semantics and evaluation scheme based
on the lattice’s partial order. Like Ross and Sagiv, this work
shares some technical similarities with this paper, but differs
in its goals and problem domain: Köstler et al. use subsump-
tion to add semantic knowledge to graph traversal and heuris-
tic search programs, but do not propose a general-purpose
programming framework.

Zaniolo and Wang identify a class of “monotone aggre-
gates” as part of their work on supporting advanced user-
defined aggregates in the LDL++ system [43]. Like us, they
observe that monotone aggregates can easily be supported
without stratification in a Datalog system based on semi-naive
fixpoint. Their characterization of monotone aggregates is
different than ours, and they do not consider asynchrony or
distribution. In fact, supporting order-dependent aggregates is
an explicit goal of their work, whereas we seek to ensure that
programs are confluent in the face of message reordering.

8. DISCUSSION AND FUTURE WORK
A key aspect of BloomL is that it enables the composi-

tion of consistent components. Rather than reasoning about
the consistency of an entire application, the programmer can
instead ensure that individual lattice methods satisfy local
correctness properties (e.g., commutativity, associativity, and
idempotence). CALM analysis verifies that when these mod-
ules are composed to form an application, the complete pro-
gram satisfies the desired consistency properties.

Nevertheless, designing a correct lattice can still be diffi-
cult. To address this, we plan to develop tools to give program-
mers more confidence in the correctness of lattice implemen-
tations. For example, we plan to build a test data generation
framework that can efficiently cover the space of possible
inputs to lattice merge functions, drawing upon recent work
on test generation for Bloom [4]. We also plan to explore a
restricted DSL for implementing lattices, which would make
formal verification of correctness an easier task.

Every join semilattice includes ⊥, a distinguished “small-
est element.” A natural extension is to consider providing
bounded lattices that also contain >, a “greatest element.”
Such a value is already supported by lbool (> = true),
in addition to the lcart lattice discussed in Section 6.1. >
behaves differently than other lattice elements: because it is
immutable, any function can safely be applied to it (whether
monotone or not), without risking inconsistency. Since the
merge function for > will always yield >, this might also
allow a more efficient representation. For example, in a com-
plete lcart, we need only store the “summarized” cart state,
not the log of client operations.

9. CONCLUSION
In this paper, we proposed BloomL, a distributed vari-

ant of Datalog that extends logic programming with join
semilattices. BloomL is particularly valuable for enabling

13

coordination-free, consistent distributed programming, over-
coming key hurdles in prior work. Like CRDTs, BloomL

allows application-specific notions of “progress” to be repre-
sented as lattices, and goes further by enabling safe mappings
between lattices. BloomL improves upon our own earlier
work by expanding the space of recognizably monotonic pro-
grams, allowing more programs to be verified as eventually
consistent via the CALM analysis. In addition to providing
richer semantic guarantees than previous approaches, in our
experience BloomL provides a natural and straightforward
language for building distributed systems.

Acknowledgments
We would like to thank Emily Andrews, Peter Bailis, Tyson
Condie, Ali Ghodsi, and Matei Zaharia for their helpful feed-
back on this paper. This work was supported by the Air
Force Office of Scientific Research (grant FA95500810352),
the Natural Sciences and Engineering Research Council of
Canada, the National Science Foundation (grants CNS-0722077,
IIS-0713661, IIS-0803690, and IIS-0917349), and gifts from
NTT Multimedia Communications Laboratories and Microsoft
Research.

10. REFERENCES
[1] P. Alvaro et al. A Declarative Semantics for Dedalus.

Technical Report UCB/EECS-2011-120, EECS
Department, UC Berkeley, Nov. 2011.

[2] P. Alvaro et al. Consistency Analysis in Bloom: a
CALM and Collected Approach. In CIDR, 2011.

[3] P. Alvaro et al. Dedalus: Datalog in time and space. In
Datalog Reloaded. Springer Berlin / Heidelberg, 2011.

[4] P. Alvaro et al. BloomUnit: Declarative Testing for
Distributed Programs. In DBTest, 2012.

[5] T. J. Ameloot et al. Relational transducers for
declarative networking. In PODS, 2011.

[6] K. R. Apt, H. A. Blair, and A. Walker. Towards a theory
of declarative knowledge. In J. Minker, editor,
Foundations of Deductive Databases and Logic
Programming, pages 89–148. Morgan Kaufmann, 1988.

[7] I. Balbin and K. Ramamohanarao. A generalization of
the differential approach to recursive query evaluation.
Journal of Logic Programming, 4(3):259–262, 1987.

[8] K. Birman et al. Toward a cloud computing research
agenda. SIGACT News, 40(2):68–80, 2009.

[9] Bloom programming language.
http://www.bloom-lang.org.

[10] G. DeCandia et al. Dynamo: Amazon’s highly available
key-value store. In SOSP, 2007.

[11] C. A. Ellis and S. J. Gibbs. Concurrency control in
groupware systems. In SIGMOD, 1989.

[12] A. A. Farrag and M. T. Özsu. Using semantic
knowledge of transactions to increase concurrency.
ACM TODS, 14(4):503–525, Dec. 1989.

[13] C. J. Fidge. Timestamps in message passing systems
that preserve the partial ordering. In Australian

Computer Science Conference, 1988.
[14] H. Garcia-Molina. Using semantic knowledge for

transaction processing in a distributed database. ACM
TODS, 8(2):186–213, June 1983.

[15] M. Gelfond and V. Lifschitz. The stable model
semantics for logic programming. In ICLP, 1988.

[16] D. K. Gifford. Weighted voting for replicated data. In
SOSP, 1979.

[17] P. Helland and D. Campbell. Building on quicksand. In
CIDR, 2009.

[18] J. M. Hellerstein. The Declarative Imperative:
Experiences and Conjectures in Distributed Logic.
SIGMOD Record, 39(1):5–19, 2010.

[19] B. Ippolito. statebox, an eventually consistent data
model for Erlang (and Riak).
http://labs.mochimedia.com/archive/2011/
05/08/statebox/, 2011.

[20] G. Köstler et al. Fixpoint Iteration with Subsumption in
Deductive Databases. Journal of Intelligent
Information Systems, 4(2):123–148, 1995.

[21] L. Lamport. Time, clocks, and the ordering of events in
a distributed system. CACM, 21(7):558–565, July 1978.

[22] L. Lamport. The part-time parliament. ACM TOCS,
16(2):133–169, May 1998.

[23] LinkedIn, Inc. Voldemort vector clock class.
https://raw.github.com/voldemort/
voldemort/master/src/java/voldemort/
versioning/VectorClock.java. Accessed
February 20, 2012.

[24] W. Lloyd et al. Don’t settle for eventual: Scalable
causal consistency for wide-area storage with COPS. In
SOSP, 2011.

[25] W. R. Marczak et al. Confluence analysis for
distributed programs: A model-theoretic approach. In
Datalog 2.0, 2012. To appear.

[26] F. Mattern. Virtual time and global states of distributed
systems. In Workshop on Parallel and Distributed
Algorithms, 1989.

[27] P. E. O’Neil. The Escrow transactional method. ACM
TODS, 11(4):405–430, Dec. 1986.

[28] Oracle Corporation. Streams Conflict Resolution.
http://docs.oracle.com/cd/B10501_01/
server.920/a96571/conflict.htm.

[29] C. H. Papadimitriou. The serializability of concurrent
database updates. Journal of the ACM, 26(4):631–653,
Oct. 1979.

[30] D. S. Parker et al. Detection of Mutual Inconsistency in
Distributed Systems. IEEE Transactions on Software
Engineering, SE-9(3):240–247, 1983.

[31] R. Power and J. Li. Piccolo: building fast, distributed
programs with partitioned tables. In OSDI, 2010.

[32] K. A. Ross. Modular stratification and magic sets for
DATALOG programs with negation. In PODS, 1990.

[33] K. A. Ross and Y. Sagiv. Monotonic aggregation in
deductive databases. In PODS, 1992.

14

[34] M. Shapiro et al. A comprehensive study of convergent
and commutative replicated data types. Technical
Report RR-7506, INRIA, 2011.

[35] M. Shapiro et al. Conflict-free replicated data types. In
13th International Symposium on Stabilization, Safety,
and Security of Distributed Systems, 2011.

[36] SQLite Query Language: ON CONFLICT clause.
http://sqlite.org/lang_conflict.html.

[37] C. Sun and C. Ellis. Operational transformation in
real-time group editors: issues, algorithms, and
achievements. In CSCW, 1998.

[38] C. Sun et al. Achieving convergence, causality
preservation, and intention preservation in real-time
cooperative editing systems. ACM TOCHI,
5(1):63–108, Mar. 1998.

[39] D. B. Terry et al. Managing update conflicts in Bayou,
a weakly connected replicated storage system. In SOSP,
1995.

[40] A. Van Gelder et al. The well-founded semantics for
general logic programs. JACM, 38(3):619–649, 1991.

[41] W. Vogels. Eventually Consistent. CACM, 52(1):40–44,
2009.

[42] W. E. Weihl. Commutativity-based concurrency control
for abstract data types. IEEE Transactions on
Computers, 37(12):1488–1505, 1988.

[43] C. Zaniolo and H. Wang. Logic-based user-defined
aggregates for the next generation of database systems.
In The Logic Programming Paradigm: Current Trends
and Future Directions, pages 401–424. Springer Verlag,
1999.

15

	Introduction
	BloomL: Logic and Lattices
	Outline

	Background
	Bloom
	Data model
	Statements

	CALM analysis
	Limitations of set monotonicity

	Adding Lattices to Bloom
	Definitions
	Language concepts
	Statements in BloomL
	Lattice methods

	Built-in lattices
	User-defined lattices
	Integration with set-oriented logic
	Converting collections into lattices
	Collections with embedded lattice values

	Confluence in BloomL

	Implementation
	Semi-naive evaluation
	Performance validation
	Modifying Bud

	Case Study: Key-Value Store
	Basic Architecture
	Object Versioning
	Vector Clocks
	Version-Value Pairs
	Discussion

	Quorum Reads and Writes

	Case Study: Shopping Carts
	Monotonic checkout

	Related Work
	Discussion and Future Work
	Conclusion
	References

